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1. INTRODUCTION

The multipole expansion is a classical result, originally obtained by Maxwell in 1873 (see
reference [1, p. 170, note]), which is currently used in acoustics, electromagnetism and #uid
mechanics, areas where the Poisson or d'Alembert equations play a prominent role in the
description of "elds generated by source distributions or by appropriate sets of boundary
conditions.

In acoustics, the study of sources received a great impulse with the establishment of
Lighthill's brilliant analogy [2], pointing out the intrinsic quadrupolar nature of sources of
internally generated sound in free #ows and presenting a situation where a continuous
tri-dimensional source distribution for the wave equation was quite meaningful. Although
applications of the multipole expansion are not at all restricted to aeroacoustics, one can
say that aeroacousticians use it, maybe, a little more than other acousticians, since source
distributions, moving or stationary and frequently of quadrupolar type, are one of their
main concerns. In this context, it is signi"cant to note that in the "rst papers dealing
explicitly with the multipole expansion in acoustics, Oestreicher, after formulating the
theory [3], expanded it in order to describe the sound "eld of moving bodies [4] and that,
today, the standard references for the subject are the texts by Pierce [1], Doak [5],
Goldstein [6] and Ffowcs Williams [7], all but the "rst of them by authors whose names are
strongly associated with aeroacoustics.

The expansion is commonly understood in the sense that, given an arbitrary source
distribution Q, representing the right-hand side of the Poisson or d'Alembert equations, and
regarded as a monopole source distribution, the corresponding generated xeld can be
expressed, by means of a Taylor expansion in the space variable, as a series of "elds of point
sources located at a "xed arbitrary point. Due to the presence of the space derivatives
proceeding from the Taylor expansion, the point sources can be identi"ed as point
multipoles [1, 3, 5}7], i.e., as sources obtained by particular combinations of pairs of point
monopoles of canceling strengths. The number of space derivatives, n, denotes the multipole
order, while 2n represents the number of monopoles needed to generate a multipole
component of order n. From the "eld expansion, the multipole strengths are obtained and
the source function can be expressed by a series of point multipoles.

Being based on the expansion of the "eld generated by a source distribution, the
multipole expansion tends to be regarded as dependent on the knowledge of the Green's
function of the "eld equation. Probably as a consequence of this, the expansion is usually
discussed in acoustics only for situations where the propagation can be adequately
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described by the d'Alembert equation, i.e., for an homogeneous medium at rest, when the
problem can be represented by

Mc~2
0

L2/Lt2!+ 2N/ (x, t)"Q(x, t), (1)

where c
0

is the speed of the / waves and the corresponding solution is given, in
tri-dimensional unbounded space, by

/(x, t)"P
=

Q(y, t!Dx!yD/c
0
)

4nDx!yD
d<y , (2)

a form that seems naturally to suggest the Taylor expansion of the integrand around a "xed
source point. The fact that Green's function for a more general situation can also be
expanded was used by Oestreicher [4] but has not, to the author's knowledge, been further
pursued.

In the present paper, it is shown that the source distribution itself can be directly
expanded into a series of point multipoles, without the need of referring to the expansion of
the "eld. This result is more general than previous ones, being valid for any situation and
supporting a generalization of the concept of multipoles in a non-homogeneous and/or
moving medium which places emphasis on the physical meaning of the sources. The
possibility of direct source expansion was left implicit in previous work [8], being here fully
discussed.

2. THE MULTIPOLE EXPANSION

Given an arbitrary scalar function depending on space and time, Q(x, t), supposed null
outside a closed domain C or, else, decaying faster than any power of DxD as DxDPR, so that
it can represent a source distribution con"ned to a fairly bounded region, one can write,

Q(x, t)"P
=

Q(y, t)d (x!y) d<y . (3)

Expanding d (x!y) in a Taylor series around y"0 as
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permits writing Q as the series of generalized functions
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where Q (n)(t) represents the tensor of order n, whose components, Q (n)
ijk2

, are proportional to
the moments of order n of Q with respect to the (arbitrary) reference point, x"0,

Q (n) (t)"
1

n!P
=

(y)nQ(y, t) d<y . (6)

For d-dimensional space, there are dn moments of order n, which can assume up to
(n#d!1)!/[n!(d!1)!] di!erent values (since pairs of Q (n)

ijk2
whose indexes di!er by



906 LETTERS TO THE EDITOR
a permutation are equal to each other). It can be shown, following the procedure of
Oestreicher [3], that in general only the lowest order non-zero Q (n) is independent of the
choice of the reference point.

If Q is taken as the right-hand side of the d'Alembert equation (1) (or of the Poisson
equation), the above result yields directly the same multipole expansion of the source
distribution Q that would be obtained by the more lengthy procedure, described earlier, of
recovering the multipole strengths from the expansion of the "eld of Q, the strengths of the
2n-pole components being given by the corresponding Q (n)

ijk2
. It must be stressed that

equality (5) implies that both sides are to be regarded as equivalent generalized functions.
It should be noted that both methods rely on the existence of the integrals in equation (6)

and, as long as wave equations in the time domain in tri-dimensional space are concerned,
on the expansion of a delta function, since the classical approach is equivalent to expanding
the wave equation's Green's function, G, in a Taylor series. The necessity of dealing
explicitly with the expansion of a generalized function is avoided by expanding either the
time domain form of the resulting "eld, as in references [6, 7], or instead, the Green's
function of a problem formulated in the frequency domain, as done in references [1, 3}5].

The advantage of the present procedure is that it permits the generalization of the
multipole expansion for any function suitable of being regarded as a source distribution to
any equation, provided the integrals in equation (6) exist. The expansion is more
meaningful, however, for source terms in linear equations since, in this case, the fact that the
original and the expanded source distributions can be regarded as equivalent generalized
functions means that they generate the same "eld. In a non-linear problem the expansion
can be used to produce an approximation for the source function. The equivalence with the
classical method, when applicable, is shown in Appendix A.

3. THE PHYSICS OF THE MULTIPOLES

The physical and mathematical interpretation of the multipoles obtained in the
expansion is, of course, dependent on that of the original source function. If a scalar Q is
seen as a monopole source distribution, the "rst term in the expansion, the scalar Q (0),
stands for a point monopole, the second, a vector with components Q (1)

i
, for a point dipole,

and so on. If Q represents a scalar component of a multipole distribution of order m,
Q (0) will correspond to a point source of the same order, Q (1) to one of order m#1, and so
on. The generalization to tensor source functions of any order is straightforward, Q (n)

being, for a source function described by a tensor distribution of order m, a tensor of order
n#m.

It is common to regard the source function Q for a scalar wave equation as a monopole
distribution per unit volume or mass. This is consistent with equation (3) and suggests that
localized excitation at x"0 would be properly represented by

Q(x, t)"Q
0
(t)d (x), (7)

where Q
0
(t), the point monopole source strength, describes the time history of the

excitation. Although this is mathematically correct, it is not necessarily the best choice from
a physical point of view: since a wave equation in acoustics is obtained by the combination
of the equations of mass and momentum together with the entropy equation (which
contains the information on energy that is not implicit in the other two and permits the
establishment of a relationship between the material time derivatives of pressure and
density), it follows that the source terms in the resulting wave equation can, ideally, always
be traced back to source terms in the fundamental equations. The latter are the ones that
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correspond to the most physically meaningful forms of local excitation and thus, since they
refer to the possible forms of basic singularities, should be treated as `monopolesa.

The general form of the source function Q in an acoustic wave equation was discussed in
references [8, 9]. Let q represent a source distribution in the equation resulting from the
combination of the mass and entropy equations (i.e., in the isentropic continuity equation),
being related to local changes in volume generated by the addition of mass or heat, and
f a source distribution in the momentum equation. Thus, as the process of derivation of the
wave equation involves the application of a scalar operator M to the "rst equation and the
contraction of a vector operator D with the second one, usually after the equations are
linearized in the #uctuations, the corresponding source function Q can be represented by

Q"M(q)#D ) (f ), (8)

where the natural candidates to the expansion (on the understanding that they have
a non-zero contribution to the sound "eld) are the fundamental source terms, q and f,
instead of the "nal source function Q.

The q and f terms are usually treated as a monopole and a dipole distribution,
respectively, due to the fact that, in an homogeneous medium at rest, the natural form of
Q in the linearized wave equation for pressure is

Q"

Lq

Lt
!+ ) f , (9)

where Lq/Lt, q,!+ ) f and Q can all be regarded as monopole distributions. The distinction
between them can be made by calling q a volume velocity monopole distribution while Lq/Lt
and !+ ) f , as well as Q, are seen as volume acceleration sources (see, e.g., reference [10]). As
for f, it can be regarded as a dipole distribution, of the volume acceleration type, for the
d'Alembert equation, since its contribution to Q in equation (9) is e!ectively in dipole form:
the "rst term in the expansion of !+ ) f is zero, while the coe$cient of the second one is
identical to that of the "rst term in the expansion of f. Indeed, it is simple to prove that
Q (n) obtained in the expansion of f is identical to Q (n`1) proceeding from the expansion of
!+ ) f around the same source point.

The dipole character of f in equation (9) can also be made explicit by writing f as in
equation (3), i.e., as

f (x, t)"P
=

f (y, t)d (x!y) d<y (10)

and noting that its contribution to Q can be represented as

!+ ) f (x, t)"!

L
Lx

i
P
=

f
i
(y, t)d(x!y) d<y"P

=

f
i
(y, t)

L
Ly

i

d (x!y) d<y , (11)

where each source element is associated with a space derivative of the delta function.
The identi"cation of f with dipoles, however, is not exact in a general situation: if the

sources are not in an homogeneous medium at rest (or in uniform movement), the operator
D ) , acting on the momentum equation, will not be given simply by the `dipole operatora
!+ . and, as a consequence, the "rst term in the multipole expansion of the contribution of
f to Q, i.e., of D ) f, will not, in general, be zero, so that f cannot be properly regarded as
a dipole source distribution for the wave equation anymore.

This happens, for instance, in the case of a non-homogeneous medium at rest, with
arbitrary mean density distribution o

0
(x) and under uniform mean pressure, for which the



908 LETTERS TO THE EDITOR
linearized wave equation for pressure #uctuations p, considering sources per unit volume
q and f, is given by

1

c2
0

L2

Lt2
p!o

0
+ ) A

+p

o
0
B"

L
Lt

q!o
0
+ ) A

f

o
0
B"

L
Lt

q!+ ) f#
+o

0
o
0

) f . (12)

The presence of a non-zero monopole-like term in Q due to f can be physically justi"ed as
follows: if the medium is non-homogeneous or is in non-uniform movement, a point source
of momentum cannot, in general, be modelled by two equal and opposite mass (or volume)
sources, since the existence of a di!erence in the mean value of density (for sources per unit
volume) or velocity (for all sources) along the line joining the mass sources requires, if they
are expected to model the momentum source, a di!erence in their amplitudes which
accounts for a monopole residue.

Nevertheless, although f will not necessarily contribute exclusively as a dipole
distribution for the wave equation, it can always be regarded as a monopole distribution for
the momentum equation, more speci"cally, as a force monopole distribution. This is the only
multipole classi"cation for f that does not depend on mean #ow properties, being fully
general. The imposed stress "eld T, corresponding to f"!+ ) T and usually regarded as
a quadrupole distribution, would then be seen as a force dipole distribution.

It should be noted that the denominations volume velocity and volume acceleration, used
previously to di!erentiate between the sources originated from q and f in equation (9), refer
both to sources connected to the continuity equation (the only that can admit volume
sources), but while the volume velocity ones, represented by q, stand for sources in the
continuity equation itself, the volume acceleration sources actually stand for sources in the
equation obtained by taking the time derivative of the continuity equation (the material
time derivative, in the general case), so that the source function Q in a (second order) wave
equation would be seen as a volume acceleration monopole distribution. This feature makes
the volume acceleration sources entities whose physical meaning is entirely dependent on
the proper association with volume velocity or momentum sources. Even so, as long as
D ) f"!+ ) f , the identi"cation of f with a volume acceleration dipole poses no problem.
For a general D, however, the contribution to Q of a volume acceleration dipole source will
be di!erent from the actual contribution of f. In equation (12), for instance, all three source
terms in the rightmost representation can be regarded as volume acceleration monopole
distributions, although neither of the two terms involving f, if both are non-zero, can exist
independently of the other.

If one chooses to call the external force term a volume acceleration dipole source
distribution in a general situation, as done, e.g., by the author in previous work [8, 11], then
the volume acceleration multipoles, from dipole onward, will always correspond to physical
sources. This denomination, although providing a simple form of identifying the multipoles
originated from f, describes properly the source process in particular situations only.

The single option that is physically correct in any situation is to refer to f as a di!erent
type of monopole source distribution * a vector one, as discussed. More important,
however, than the choice of the denomination is the requirement that all source terms
in a wave equation be physically meaningful. Situations in aeroacoustics where some
of the resulting source terms cannot be fully associated with sources in the fundamental
equations were discussed in references [9, 11]. A fuller discussion of this aspect will appear
elsewhere.

It must be remembered that depending on the complexity of the mean #ow it is not
possible to combine the linearized fundamental equations into a wave equation with time
independent coe$cients and, thus, to obtain the "nal source function Q (since in this case
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the operators M and D are not de"ned). Then, in order to compute the linear sound "eld,
one is forced to work with the linearized fundamental equations and their source terms, as
e.g., in reference [12]. The present analysis justi"es that, in the compact limit, as long as
a far,eld solution is sought, these fundamental source terms * which can describe either
external sources, boundary conditions or aerodynamical noise sources, being always
amenable of being represented by q and f* can be approximated by the "rst non-zero term
of the corresponding expansion. This procedure is, of course, valid independently of the
complexity of the mean #ow and can be used to produce the appropriate compact source
term expressions without the need of forcing simplifying assumptions in order to reduce the
wave equation to the d'Alembert equation and then expand the solution. Since these
expressions involve an integral over the source region, they are subject to some of the
manipulations that are usually performed on the solution, being thus expected to permit
that interesting insight into characteristics of the far "eld be obtained directly from the
source terms in the fundamental equations.

4. CONCLUSION

A generalization of the multipole expansion, based on a direct expansion of the source
"eld, has been presented. The limitations concerning convergence of series and integrals are
the same as in the classical approach. The advantage is the extension of the multipole
expansion for source functions in any equation.

With the present method a number of results in aeroacoustics * particularly those
concerning expressions for sources in the compact limit, when the source distribution can be
approximated by the "rst non-zero term in the expansion * can be obtained in a more
straightforward way, since it permits working directly with source terms in the linearized
(preferably) or complete forms of the fundamental equations or in the di!erent wave
equations. A consequence of this feature is that many of these results can have their domain
of validity extended, not being necessarily bound by the approximations involved in
reducing wave equations to the d'Alembert equation.
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APPENDIX A: THE DIFFERENT EXPANSION POSSIBILITIES

Let L
(x, t)

represent a linear partial di!erential operator and G(x, tDy, q) the solution of

L
(x, t)

G(x, tDy, q)"d (x!y)d (t!q), (A1)

so that the solution of the general problem

L
(x, t)

/ (x, t)"Q(x, t) (A2)

can be represented by

/(x, t)"P
`=

~=
P
=

G(x, tDy, q)Q (y, q) d<y dq. (A3)

It is particularly interesting to rewrite equation (A3) as

/(x, t)"P
`=

~=
P
=
P
=

G (x, tDf, q)d (f!y)Q (y) d<f d<y dq (A4a)

or, omitting the time dependence throughout, in order to simplify the notation, as

/(x)"P
=
P
=

G(x Df)d(f!y)Q(y) d<f d<y , (A4b)

since these forms permit illustrating the di!erent expansion possibilities.
Expanding d (f!y) as

d(f!y)"
=
+
n/0

1

n!
(!y )+ )nd(f ), (A5)

one can write

/(x)"P
=
P
=

G(xDf)
=
+
n/0

1

n!
(!y )+f)nd(f)Q(y) d<f d<y . (A6)

By changing the order of integration, the above expression can be written as

/(x)"P
=

G(x Df )P
=

Q (y)
=
+
n/0

1

n!
(!y )+f)nd (f) d<y d<f (A7)

which corresponds to the source expansion.
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Transferring the space derivatives in equation (A6) to G, one obtains

/(x)"P
=
P
=

d (f)
=
+
n/0

1

n!
(y )+f)nG(x Df)Q(y) d<f d<y (A8)

which can be written, after the f integral is performed, as

/(x)"P
=

=
+
n/0
C

1

n!
(y )+f)nG(x Df)D f/0

Q(y) d<y (A9)

and expresses the expansion of G, corresponding to Oestreicher's result [4]. If G is such that
G(x Df)"G(x!f D0), then it follows that +fG"!+xG, and the usual result,

/(x)"P
=

=
+
n/0

1

n!
(!y )+x)nG(xD0)Q(y) d<y , (A10)

which can be regarded as the expansion of the "eld, is obtained.
As long as the Green's function G exists, it can always be expanded, the corresponding

source multipole expansion for a given source function Q being also de"ned, provided the
source integrals converge. This expansion does not depend on the knowledge of G. The
direct expansion of the source is subject to the same restrictions concerning the integrals of
Q and can be performed also for problems for which G is not de"ned.
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